

Avoiding Unplanned Pregnancy in Clinical Research Balancing Science, Safety, and Ethics

Evan R. Myers, MD, MPH

Walter L. Thomas Professor Division of Women's Community and Population Health

Department of Obstetrics & Gynecology

Vice Chair for Reproductive Risks, Duke Health IRB

Disclosures

- Consultant
 - Merck, Inc (HPV vaccination)
 - Moderna, Inc (CMV vaccines)
 - Hologic, Inc (cervical cancer screening)

Overview

- Avoiding Pregnancy in Research: A Brief History
- Duke IRB Approach
- Common Issues with Sponsor Protocol/Consent Language
 - Pregnancy "potential"
 - Context of pregnancy and underlying condition
 - Pregnancy testing
 - Contraceptive Methods
 - What happens if pregnancy occurs
- Research/Policy Agenda

Inclusive Language

- Duke IRB currently reviewing and updating consent language and policies to be more inclusive/gender-neutral
- Reflected in this presentation except when referencing original sources

Avoiding Pregnancy in Research: A Brief History

Thalidomide

• 1957

- Marketed in Germany as sedative/hypnotic, anxiolytic, anti-emetic.
- Claimed to be particularly effective for morning sickness
- OTC by late 1957
- 1956-57
 - SKF conducted clinical trials in US, declined to market (no evidence of effectiveness)
- 1958
 - WS Merrell agreed to market/distribute
- 1960
 - FDA application, rejected multiple times
- 1961-1962
 - Accumulating evidence of teratogenic effects
 - Estimated 10,00 cases of phocomelia worldwide
 - 50% mortality

Regulatory Response

- 1962: Kefauver/Harris Amendment
 - Requirement of proof of safety and *efficacy* prior to marketing
 - Post-marketing reporting of side effects
 - Evidence of efficacy based on controlled clinical studies
 - Informed consent of subjects
 - Retrospective evaluation of drugs approved between 1938 and 1962 for efficacy
 - FDA empowered to
 - $_{\circ}~$ Define good manufacturing practice and conduct inspections of production facilities
 - Control of prescription drug advertising, mandating accurate information about side effects
 - ° Control marketing of generic drugs to avoid simply re-marketing under new name

Regulatory Impact on Pregnant People: Restricted Access to Research Participation

- 1975
 - Pregnant women defined as "vulnerable research subjects"
- 1977
 - FDA "General considerations for the clinical evaluation of drugs prohibits women of childbearing potential from participating in early phase clinical research except for life-threatening conditions"

The Pendulum Swings Back: Increasing Access

- 1986
 - NIH advisory committee recommends grants should include women able to become pregnant unless explicit rationale provided
- 1993
 - FDA "Guideline for study and evaluation of gender differences in the clinical evaluation of drugs" reverses 1977 guidance
- 1998
 - FDA requires NDA to present safety/efficacy data by sex
- 2000
 - Amendment to CFR gives FDA authority to place trial for life-threatening disease or condition on clinical hold if sponsors exclude potential subjects only because of reproductive potential
- 2019
 - PRGLAC—cross-agency HHS task force recommendations to encourage enrollment of pregnant and lactating individuals into trials
 - Released December 2019—NOT considered in COVID treatment/vaccine trials

Excluding Pregnant People from Research

- Despite PRGLAC, majority of interventional studies still exclude pregnant or lactating people
- Legitimate reasons for exclusion of pregnant or lactating people from specific studies
 - Scientific: Effects of physiological changes of pregnancy/lactation on
 - Drug metabolism
 - Disease natural history
 - $_{\circ}$ Study outcomes
 - All can affect study precision/validity/generalizability
 - Ethical
 - Known or unknown risks of study interventions to a developing pregnancy (or nursing infant) in setting of uncertain benefits from study intervention

Remainder of Presentation

- Assumes that exclusion of pregnant or lactating people from a particular protocol is scientifically and ethically justified
- Focuses on protocols to minimize the probability of
 - Unknown pregnancy at time of study enrollment
 - Pregnancy occurring during potential embryonic/fetal exposure to study interventions
 - In event pregnancy does occur, minimizing duration of exposure

Definition of "RISK"

- In FDA/regulatory use, "bad outcome"
- In statistics/decision science, "probability that you can estimate"
- Will be used in both senses here
- Primary argument
 - For reproductive "risks" in particular, our focus on the "bad outcome" definition leads us to ignore the "probability" definition
 - This leads to protocols and consent processes where the "benefit" of an incrementally reduced probability of a bad outcome may be outweighed by burdens or harms to research participants (and their nonconsenting partners)

Current Sponsor Approach to Minimizing Risks

- Define "Women of childbearing potential"
- Unknown pregnancy at enrollment ruled out by test
 - Ongoing testing may required
- Contraception requirement
- For many studies, male subjects with partners "of childbearing potential" also required to use contraception
- If pregnancy occurs, reported to sponsor

Implications

- Protocol requirements typically based ONLY on potential risk ("outcome") of study drug/intervention to a developing pregnancy
- No consideration of risk ("probability") of pregnancy in specific study population
 - Pragmatic
 - Unnecessarily increases length/complexity of consent forms
 - Inefficient use of resources
 - Cognitive burden/impact on decision making
 - Potential conflicts between sponsor and IRB
 - Unnecessary burden on research subjects
 - Barrier to enrollment
 - Potential impact on quality-of-life
 - Ethical
 - $_{\circ}$ Patronizing
 - Potential violation of principle of RESPECT
 - Imposing extra risk/burden on subjects with no gain
 - Potential violation of principle of BENEFICENCE
 - May limit ability to participate in research
 - Potential violation of principle of JUSTICE

Duke IRB Process

Duke IRB Process

- Pre-2018
 - Review by primary IRB reviewer
 - "Standard language" for consents
 - Pregnancy testing policy complex (for institutional historic reasons)
 - Serum testing required for most studies
 - Any issues with appropriateness or inconsistency with reproductive biology and math usually only identified if OB/GYN representative was present at meeting
- 2018
 - Broad guidance on pregnancy testing and contraception
 - Required elements of consent
 - Review of all new protocols excluding pregnant women (or pregnancy in partners) by (n-of-1) "Pregnancy Committee"
 - Selected amendments with substantial revision of previously approved reproductive risk aspects of protocol and/or ICF

Gvnecoloav

- Modifications requested at time of review
- If necessary, discussion/negotiation with sponsor

Review Considerations

- Potential reproductive "risks" (adverse outcomes) of study interventions
- "Risk" (probability) of "risks" (adverse pregnancy outcomes) in patient population independent of study participation
- "Risk" (probability) of becoming pregnant in patient population
- "Risks" (adverse outcomes) of specific pregnancy testing and contraceptive requirements in patient population
- Ethical implications

Theoretical pregnancy risks ("bad outcomes") from potential study-specific exposures

- Pregnancy loss/miscarriage
 - Direct effects of drug, radiation, hypoxia
 - Genetic damage to egg or sperm
 - Problem—early miscarriage common (20-30% of all conceptions), more common in older mothers, difficult to assign causation
- Teratogenic effects
 - Genetic
 - Anatomic development (limb abnormalities, neural tube defects)
 - Growth/Neurologic development—usually associated with exposures later in pregnancy, very unlikely in context of most trials
- Mechanisms of exposure
 - Female
 - Direct effects on eggs
 - Direct effects on embryo/fetus (radiation)
 - Transplacental transfer of drug
 - Male
 - Direct effect on sperm (genetic or epigenetic)
 - Excretion of drug into semen \rightarrow vaginal/anal/oral absorption \rightarrow drug in maternal blood \rightarrow transplacental transfer of drug

"Risks" (outcome) by Type of Exposures

- Drugs
 - Animal data (not always predictive of human effects)
 - Human data (uncommon in pre-approval studies unless known class effect)
 - Duration of potential exposure related to pharmacology of drug, potential mechanism of action, biology of egg and sperm development
- Radiation
 - Only during intervention
 - Existing guidance on risks from different imaging methods
- Procedures
 - Only during intervention
 - Related to potential effect of procedure on uterine blood flow, oxygenation, perioperative drug exposures
- Implications for Consent
 - No need for extensive description of need for contraception for studies of short-acting exposures that occur entirely in the in-patient setting
 - Recent example: Full page of 15-page consent describing requirements for contraception for study of inhaled CO in intubated patients with respiratory distress syndrome

Common Issues: Defining Pregnancy "Potential"

- In practice, anyone with probability of becoming pregnant > 0.0%
- Menarche to menopause
- Protocol requirements apply equally



Pregnancy and Infant Outcomes in the Clinical Trials of a Human Papillomavirus Type 6/11/16/18 Vaccine: A Combined Analysis of Five Randomized Controlled Trials

Garland SM, et al, on behalf of the Quadrivalent Human Papillomavirus Vaccine Phase III Investigators

Obstet Gynecol 2009;114:1179-88

Pregnancy and Infant Outcomes in the Clinical Trials of a Human Papillomavirus Type 6/11/16/18 Vaccine: A Combined Analysis of Five Randomized Controlled Trials

Garland SM, et al, on behalf of the Quadrivalent Human Papillomavirus Vaccine Phase III Investigators

Obstet Gynecol 2009;114:1179-88

Number of female subjects 23,369 Number of pregnancies 3,620 Pregnancy Rate 15.5% (95% Cl 15.0-16.0%)

Pregnancies during and after trastuzumab and/or lapatinib in patients with human epidermal growth factor receptor 2–positive early breast cancer: Analysis from the NeoALTTO (BIG 1-06) and ALTTO (BIG 2-06) trials Lambertini M, et al Cancer 2019;125:307-16

> **Duke** Obstetrics & Gynecology

Pregnancies during and after trastuzumab and/or lapatinib in patients with human epidermal growth factor receptor 2–positive early breast cancer: Analysis from the NeoALTTO (BIG 1-06) and ALTTO (BIG 2-06) trials

Lambertini M, et al Cancer 2019;125:307-16 Number of female participants 8,836 Number of female participants premenopausal or < 55 3,947 Number of pregnancies 12 Pregnancy Rate 0.3% (95% CI 0.2-0.5%)

Pregnancies during and after trastuzumab and/or lapatinib in patients with human epidermal growth factor receptor 2–positive early breast cancer: Analysis from the NeoALTTO (BIG 1-06) and ALTTO (BIG 2-06) trials

Lambertini M, et al Cancer 2019;125:307-16

Number of female participants 8,836 Number of female participants premenopausal or < 55 3,947 Number of pregnancies 12 **Pregnancy Rate** 0.3% Number of particpants \leq 40 1,486 Number of pregnancies 12 **Pregnancy Rate** 0.81% (95% CI 0.4-1.3%)

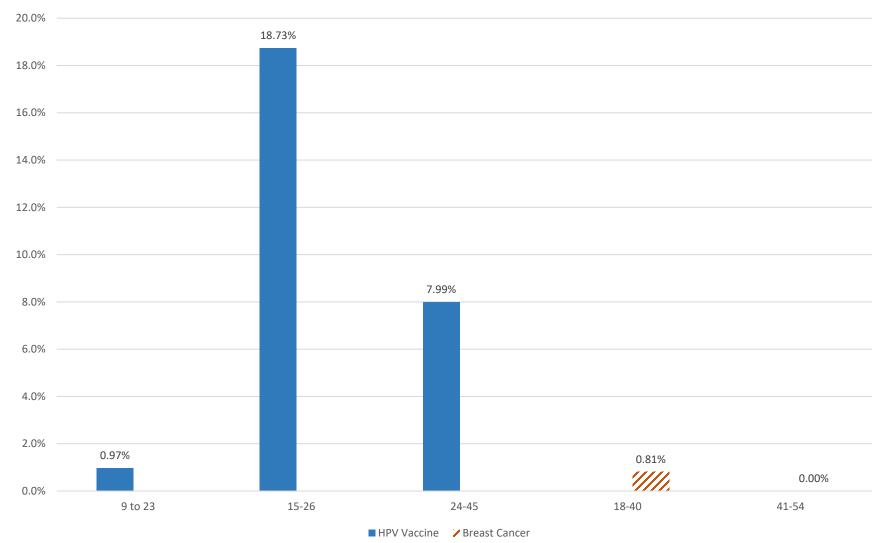
Pregnancies during and after trastuzumab and/or lapatinib in patients with human epidermal growth factor receptor 2–positive early breast cancer: Analysis from the NeoALTTO (BIG 1-06) and ALTTO (BIG 2-06) trials

Lambertini M, et al Cancer 2019;125:307-16

Number of female participants 8,836 Number of female participants premenopausal or < 55 3,947 Number of pregnancies 12 **Pregnancy Rate** 0.3% Number of participants ≤ 40 1,486 Number of pregnancies 12 **Pregnancy Rate** 0.81% **Pregnancy Rate in participants 41-55** 0% (95% CI 0-0.12%)

Factors Affecting Probability of Pregnancy

• Female partner age


- Male partner age less important
- Coital frequency
 - Decreases with age
 - Effects of underlying disease and/or treatment (including in partners)
- Past or current treatments
 - Many chemotherapy agents affect ovarian function
- Contraceptive methods
- Duration of follow-up

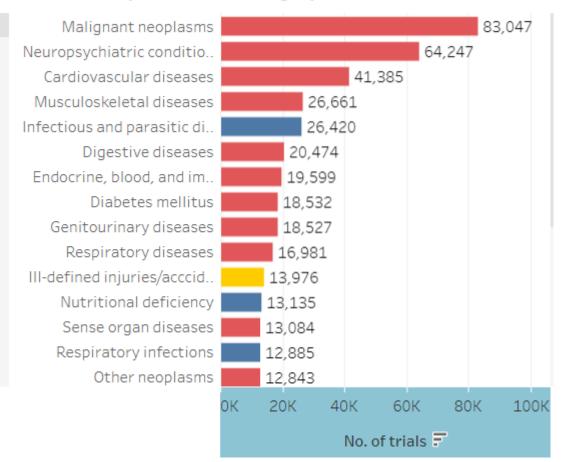
Risk ("probability") of Pregnancy Varies in Different Patient Populations

- HPV vaccine trials inclusion criteria
 - Healthy
 - Most 16-26 years old
 - One smaller trial in 27-45 year olds—pregnancy rate lower
 - Sexually active
 - Mix of contraceptive methods typical of age group, only required around time of vaccine
 - 2-3 years of observation
 - 10-15% is expected!
 - $_{\circ}~$ Pregnancy rate within 30 days of vaccine: 1%
- Many, if not most, clinical trials have very different patient populations in terms of age, coital frequency, previous treatments, contraceptive methods

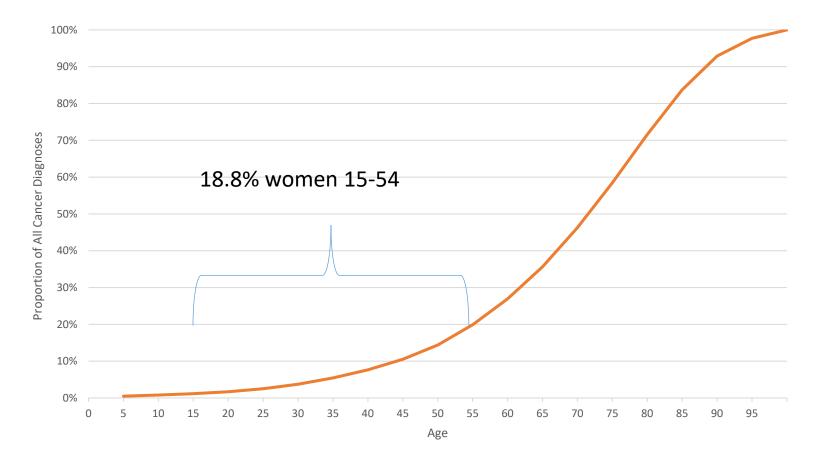
Cumulative Pregnancy Rate in Clinical Trials by Age and Condition

Age and Risk of Adverse Pregnancy Outcomes due to Drug Exposure

- Drugs with known teratogenic syndromes or adverse pregnancy outcomes
 - Thalidomide
 - Retinoic acid (acne treatment)
 - Hydantoin and other anti-epileptics
 - Some anti-depressants
 - Warfarin
 - Methotrexate
- All drugs that were/are used in women 15-44, often during pregnancy
 - Not the case for many other drugs
 - How many pregnancies in women 45-54?

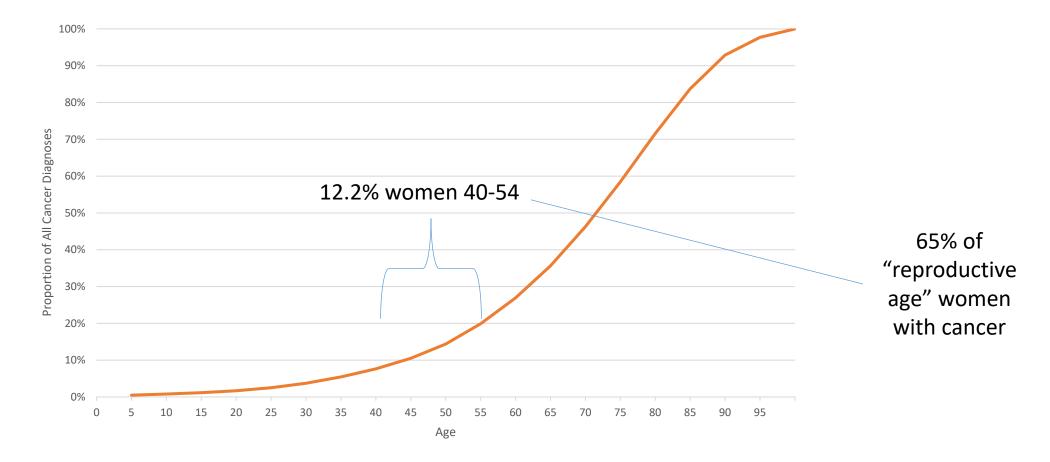


Interventional Trials by Condition

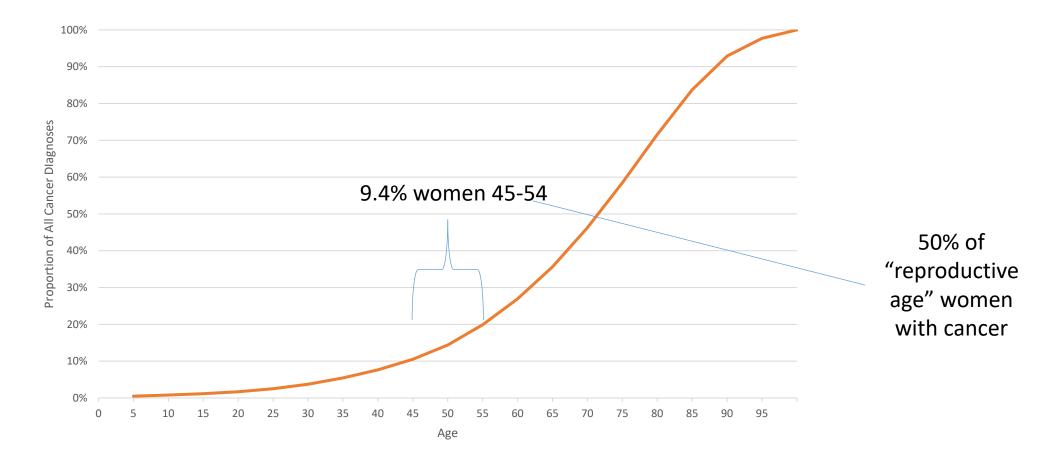

Trials registered in WHO International Clinical Trials Registry Platform

1999-2021

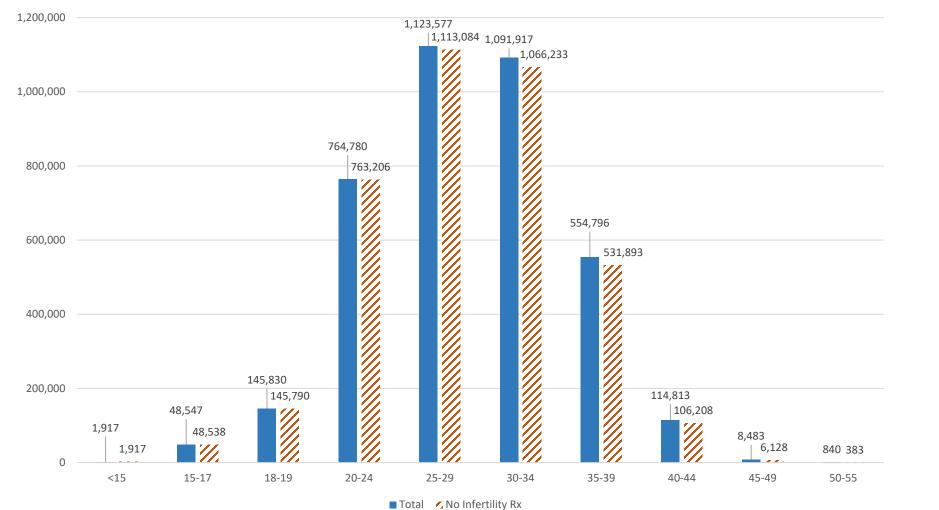
D.1. Trials by health sub-category



Duke Obstetrics & Gynecology

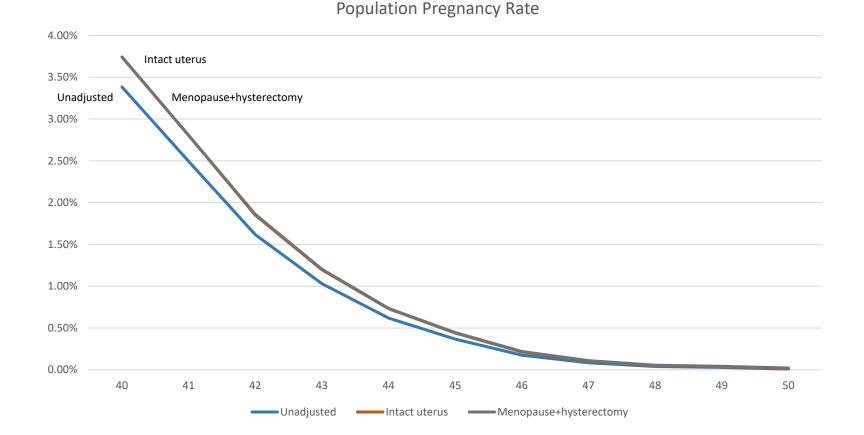

SEER, 2015-2017

Duke Obstetrics & Gynecology

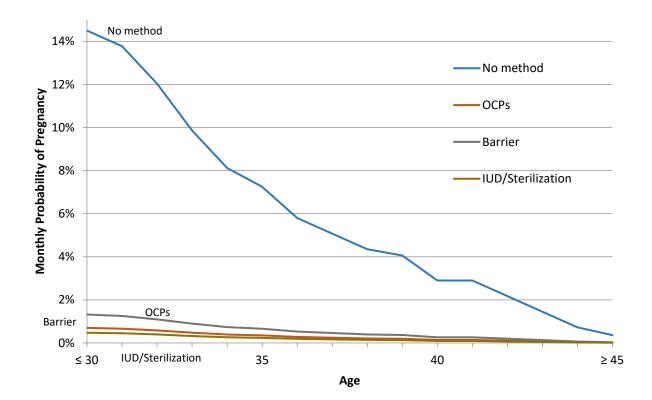

SEER, 2015-2017

SEER, 2015-2017

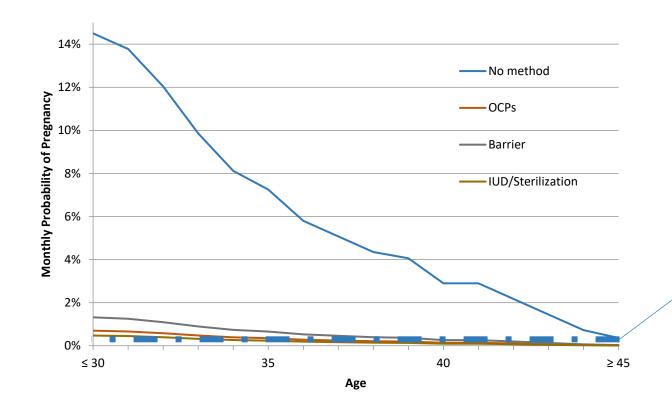
2017 US BIrths by Maternal Age



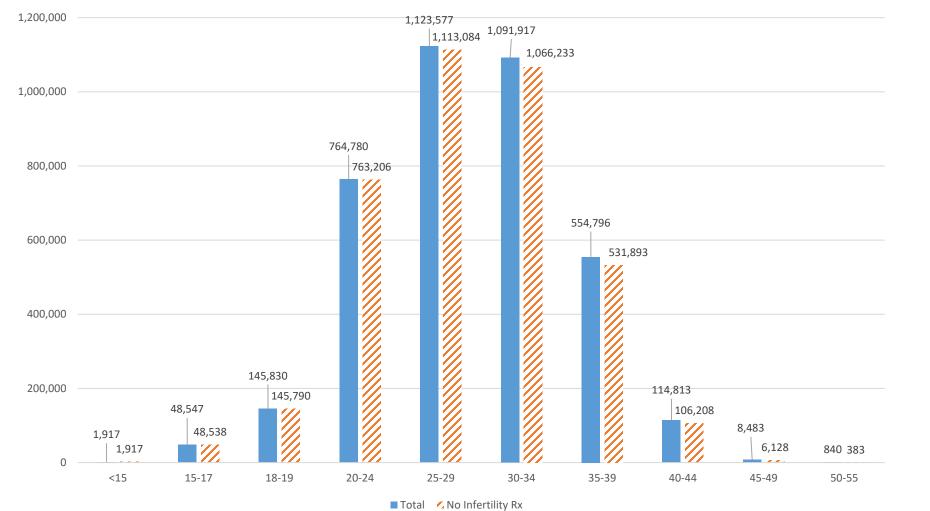
Births with no infertility treatment documentation


Ages 10-14: 1,917 Ages 50-54: 383

Annual Population Pregnancy Rate <u>(Livebirths + Miscarriages + Abortions)</u> (Total Women – Menopause – Hysterectomy)



Estimated monthly probability of pregnancy by age and contraceptive method.


Estimated monthly probability of pregnancy by age and contraceptive method.

Pregnancy probability for 45-year-old with no contraception lower than probability of 30-year-old using oral contraceptives

2017 US BIrths by Maternal Age



Births with no infertility treatment documentation

Ages 10-14: 1,917 Ages 50-54: 383

"Woman of Childbearing Potential"

"Player of NBA Potential"

1911

DUKE

Duke IRB Definition: "Woman of Childbearing Potential"

- "Person who could possibly become pregnant"
- Started menarche
 - "If your child has begun to have their periods..."
- Postmenopausal
 - "You have not completed menopause"
 - Typically 12 months since last menses and/or based on FSH
 - $_{\circ}$ $\,$ No need to have specific criteria in ICF
 - 99% by age 55, no spontaneous pregnancies—OK to exclude based on age 55 alone
- No prior hysterectomy, bilateral salpingectomy, and/or bilateral oophorectomy
 - History of bilateral salpingectomy alone not common now, but more frequently being done to reduce risk of ovarian cancer
- Common for sponsors to equate hysterectomy and tubal ligation (BTL) as "sterilization" excluding from any pregnancy testing requirement
 - BTL has failure rate higher than vasectomy, IUD, or progestin implant
 - If pregnancy testing required for those methods, no rationale for excluding it with BTL

Definition:

"Woman of Childbearing Potential"

- "Have a partner who can produce sperm"
 - Ethical issues of respect, equity
 - Component of "Pregnancy Reasonably Excluded Guidelines"
 - Pragmatic—if participant would lie about sexual orientation in order to avoid pregnancy test, how could they be trusted to adhere to more onerous study requirements?
 - Most sponsors accept
 - $_{\circ}~$ One responded that we couldn't know if subjects had been assaulted

Exclusion of People who Could Get Pregnant

- 2000 amendment to Common Rule allows clinical hold on studies under IND for drugs intended to treat life-threatening disease or condition affecting both genders
 - If men or women of reproductive potential excluded solely because of perceived risk of reproductive or developmental toxicity from drug
- Twice in past 5 years
 - Trientine (approved to treat Wilson's disease) for heart failure
 - $_{\circ}~$ Previous studies cited in protocol included women who could get pregnant
 - Sponsor not willing to amend (Duke prepared 10 page document, hour long discussion)
 - My recommendation—not approve, voted on by full IRB—not approved
 - Gene therapy for age-related macular degeneration, minimum age 50
 - Gene product plausibly embryotoxic
 - Alternative treatments available
 - $_{\circ}~$ Relatively few women affected given epidemiology of disease
 - $_{\circ}~$ Sponsor indicated FDA likely to include limitation if treatment approved
 - $_{\circ}$ Approved

Populations where Pregnancy is Impossible

- Most gyn cancers, castration-resistant prostate cancer (CRPC)
- Treatment either removes essential reproductive organs or completely suppresses production of gametes
- Issues
 - Adds unnecessary length to already complex ICF
 - Potential confusion/distraction/emotional impact
 - "My doctor said I could never get pregnant again"
 - Burden—if patient with CRPC able to have intercourse with assistance, condom requirement has significant impact on QoL
- Preferred solution—ICF addendum for extremely rare cases where risk is not 0%
 - Standard in gyn oncology
 - Variable success with sponsors for CRPC

Gamete Donation

- Requirements that participants cannot donate ova or sperm
 - Common in advanced cancer protocols
 - Recent examples include several protocols for heritable gene disorders like sickle cell and Duchenne muscular dystrophy
- For people with ovaries
 - Most donor programs have maximum age of 25, some as high as 30
 - All have extensive health screening
 - Donation requires a cycle of ovarian hyperstimulation then transvaginal oocyte retrieval
 - No woman eligible for participation in cancer clinical trial would be eligible for egg donation—equally likely to be eligible for kidney or partial liver donation
 - No oncofertility program would start hyperstimulation on patient on active treatment
- For people with testes
 - Age limit is slightly higher
 - Technically much easier than oocyte donation, so not completely impossible
 - Donation is FDA-regulated, and highly unlikely
 - Usually leave in ICF as "concession" to sponsor when I remove oocyte donation language

Gamete Donation vs Preservation

- Should explicitly distinguish donation from preservation
- "You should not donate eggs or sperm" is typical
- "If you are considering storing eggs, ovarian tissue, or sperm to preserve future fertility, you must complete this process before starting this study" strongly preferred

Definition of "childbearing potential"

- Recent examples where this was an issue
 - Monthly home pregnancy testing for all females 10 and older, regardless of menarchal status (spinal muscular atrophy)
 - Pregnancy testing and contraception requirements for protocol and consent form with minimum age of eligibility of 60 (age-related macular degeneration)

Common Issues: Pregnancy in the Context of Underlying Disease

Pregnancy in Context of Underlying Disease

- Most people able to get pregnant meeting eligibility criteria for clinical trials should be using contraception as standard of care
 - Based on age alone, high risk of miscarriage (>50% over 40), anomalies, complications
 - Many pre-existing cardiac diseases have maternal mortality rates > 10%
 - Of 13 approved drugs with REMS secondary to reproductive toxicity, 4 are for pulmonary arterial hypertension, which has maternal mortality of 30-50%
 - Renal, liver, rhematologic diseases all associated with increased risk of pregnancy complications
 - Pregnancy can affect disease progression or symptoms
 - SOC drugs may be teratogenic (warfarin, methotrexate, anti-convulsants, chemotherapy)
- Start ICF with brief description of this context
 - Informed decision making—risk of study participation and contraceptive needs compared to nonparticipation

Gvnecoloav

- "Pregnancy in people with [condition] is associated with an increased risk of ..."
- Now common in FDA labels/prescribing information

Pregnancy in Context of Underlying Disease

- "Unborn child", "unborn baby", or similar language not appropriate
 - "Charged" terminology
 - High risk of miscarriage or indicated termination in many cases even without study participation
 - Preferred term "developing pregnancy"

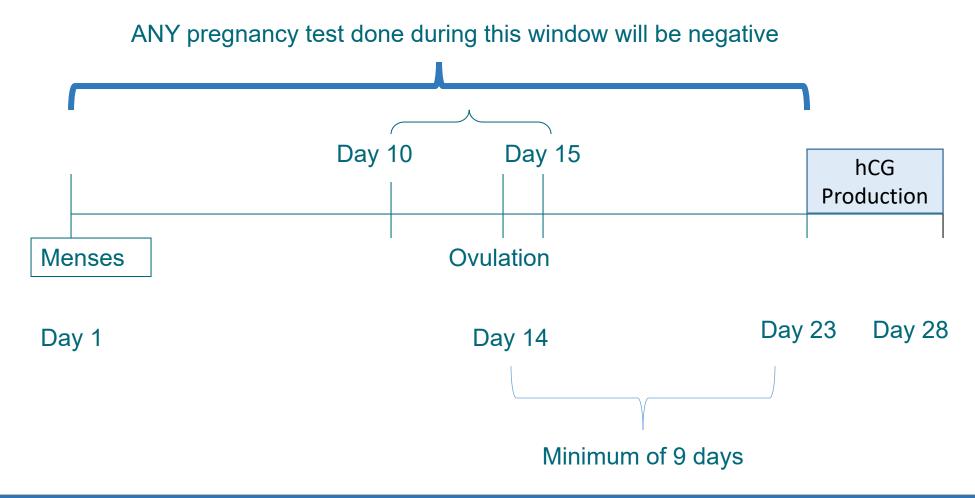
Gene Therapies and Long-term Effects

- Example: gene therapy to correct enzyme deficiency, 5 year follow-up
 - Reasonable to avoid pregnancy during study for scientific reasons
 - If therapy works, pregnancy should theoretically no longer be high risk
 - ICF should include a statement about uncertainty about impact of treatment on long-term fertility and pregnancy outcomes

Common Issues: Pregnancy Testing

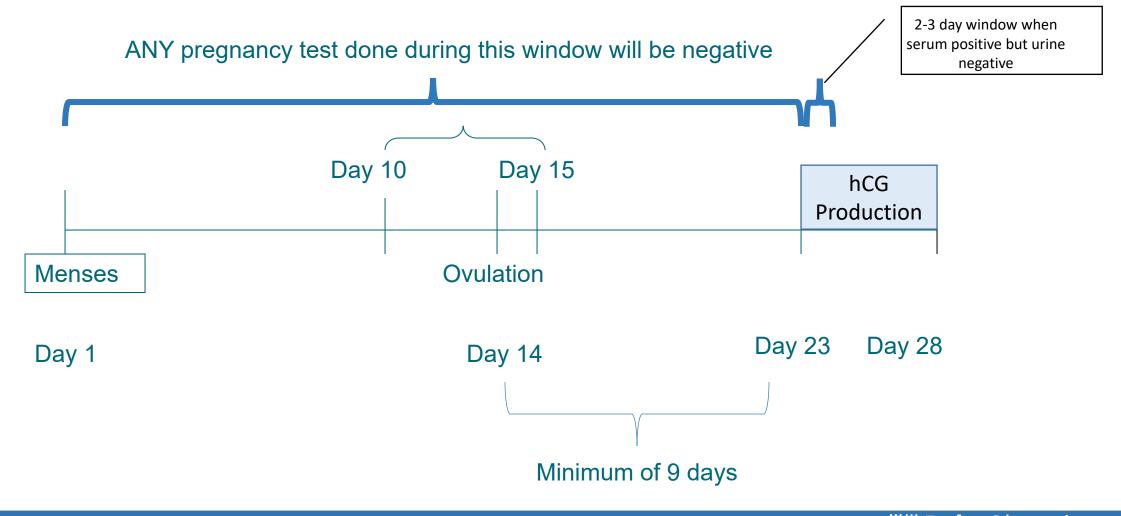
Purpose of Pregnancy Testing

- Prevent people who are pregnant at time of enrollment from exposure to potentially harmful study interventions
- Minimize duration of exposure in people who become pregnant while on study drug
- Documentation that participant did not become pregnant during study
 - Only possible rationale for testing after exposure has stopped and required window has passed—e.g., end-of-study pregnancy test)
- All prioritize negative predictive value
 - Higher test sensitivity and/or low pre-test probability of pregnancy



Test Sensitivity

- Sensitivity of pregnancy tests
 - Serum—5 mIU/L
 - Urine—20-25 mIU/L



Timing of Conception

Duke Obstetrics & Gynecology

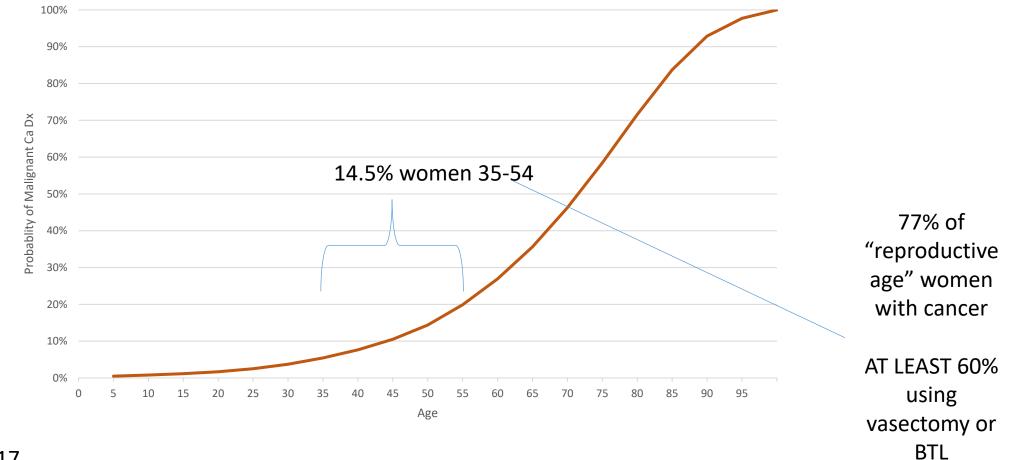
Timing of Conception

Duke Obstetrics & Gynecology

Factors Affecting Probability of Pregnancy

- Female partner age
 - Male partner age less important
- Coital frequency
 - Decreases with age
 - Effects of underlying disease and/or treatment (including in partners)
- Past or current treatments
- Contraceptive methods
- Duration of follow-up

50% 47.3% 44.2% 45% 22 40% 35% 30% 25.0% 25% 21.7% 21.4% 20% 17.9% 17.1% 16.5% \sim 15.1% 15% 9.4% 10% 8.5% 7.6% 7.4% 6.0% 4.8% 4.2% 4.7% 3.7% 1.7% 2.2% 5% 3.1% 1.6% 2.9% 1.9% 1.6 1.4% 1.0% 0.0% \mathbb{N} N 0% Tubal OCP IUD Implant Ring/patch Injectable Condom Withdrawal Other

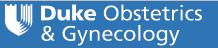

Contraceptive Method by Age, Women 15-44, United States 2011-2013

15-24 25-34 35-44

Duke Obstetrics & Gynecology

Source: National Survey of Family Growth

Vasectomy



SEER, 2015-2017

Duke Obstetrics & Gynecology

Serum vs Urine

- Very low probability of pregnancy in most patient populations
- Better sensitivity of serum test only useful if performed in the 2-3 window when hCG >5 but <20-25
 - Pregnancy testing almost always random relative to menstrual cycle
- Very small gain (well less than 1%) in NPV in most settings
 - Documentation of use of highly effective contraception has higher negative predictive value than random pregnancy test in family planning population
- False positives with serum
 - 2-3% in women 40 and older will have hCG >5, increasing with age (10% age 55)
 - Perimenopausal increase in GnRH leads to pituitary secretion of hCG
 - $_{\circ}~$ Pregnancy ruled out with FSH

Serum vs Urine

- Minimal gain in NPV with risk of false positive
 - Hard to justify serum if women under 40 unlikely to be in study
 - VERY hard to justify serum for follow-up tests when contraception required
- If serum testing required, consent must include
 - "In people 40 years and older, blood pregnancy tests can sometimes give a false positive or indeterminate result, and additional testing may be required"
 - Unexpected positive test has potential for significant distress → researchrelated risk that must be disclosed

Ongoing Testing

- Given concomitant contraception requirements, mostly performative
- Some protocols do intervals > 1 month
 - No plausible rationale
 - IF sponsor is going to require follow-up pregnancy testing, then only rational interval is monthly while on drug

Home Pregnancy Testing

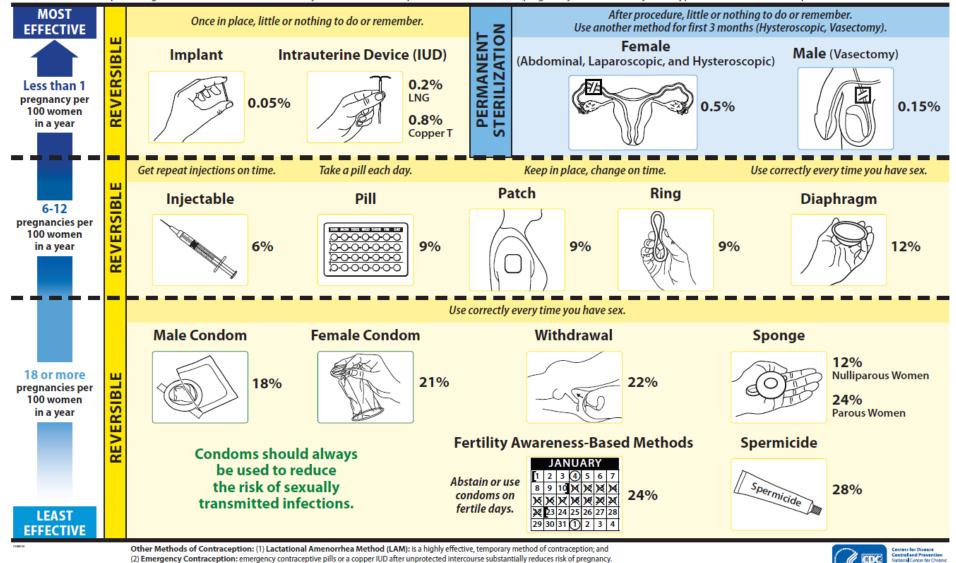
- Designed for confirmation of pregnancy in women trying to get pregnant
- All available evidence suggests that patients perform worse in interpreting results than trained study staff
- False negative rate as high as 40-50%
 - Would be more cheaper and equivalent effectiveness to give participants a quarter to toss each month

Gvnecolog

- All current REMS requiring pregnancy testing explicitly rule out home tests
- Pragmatic issues
 - Not feasible for some patient populations (visual acuity, manual dexterity)
 - Also ethical (embarrassment if partner or parent have to assist)
- Ethical issues
 - Emotional burden on patient
 - $_{\circ}~$ Guilt if false negative
 - Stopping study drug if false positive
- Had value in context of COVID restrictions

Home Pregnancy Testing

- Duke IRB has generally not approved
 - If sponsor is concerned enough about pregnancy to require monthly testing, why use a test that has documented higher false negative rate?
 - OK to have test performed locally if travel an issue
- Exception during COVID
 - ICF explicitly states that home testing has higher false negative rate
- Recent issues
 - Monthly serum testing, Parkinson's, minimum age 50—DCRI coordinating center protocol, suggested revision to avoid
 - Monthly home testing, early Parkinson's—PI stated that most patients able to perform, allowed
 - Monthly home testing, 10-year-olds with spinal muscular atrophy
 - Sponsor unwilling to amend protocol
 - Balancing considerations of (a) rare disease with few available treatments, (b) burden of physically coming to clinic, (c) burden on parents and patients
 - Allowed, but required parents to have option to have testing done at local clinic at sponsor expense



Common Issues: Contraceptive Methods

EFFECTIVENESS OF FAMILY PLANNING METHODS*

*The percentages indicate the number out of every 100 women who experienced an unintended pregnancy within the first year of typical use of each contraceptive method.

(2) Energency Contraception: Energency contraception is a Copper to Date of inforcecce intercourse sustainanty reduces its of pregnancy. Adapted from World Health Organization (WHO) Department of Reproductive Health and Research, Johns Hopkins Bloomberg School of Public Health/Center for Communication Programs (CCP). Knowledge for health project. Family planning: a global handbook for providers (2011 update). Baltimore, MD; Geneva, Switzerland: CCP and WHO; 2011; and Trussell J. Contraceptive failure in the United States. *Contraception* 2011;83:397–404.

Duke Obstetrics & Gynecology

Contraceptive Methods

- Effectiveness varies across methods AND patient population
 - "Typical use" vs "perfect use"
 - Prior probability of pregnancy
 - ^o 25 year old on OCPs more likely to get pregnant than 45 year old using nothing
 - Potential drug/drug interactions for hormonal methods
- Every method has potential downsides/harms
 - Personal/cultural/religious preferences
 - Impact of different methods on sexual function
- Potential side effects in specific conditions or other treatments
 - Thrombosis with estrogen-containing methods
 - If thrombosis is an issue with underlying condition (heart disease) or listed potential risk of study drugs, estrogen-containing methods shouldn't be listed as "acceptable" in ICF

Double methods

- Some sponsors/protocols require two methods
 - Often ICF states any two from list, no matter how impractical
 - Other than barrier plus second method, only pragmatic possibility is vasectomy plus tubal if second partnership
 - No physician would start hormonal method or insert IUD in women with a tubal ligation or partner with vasectomy solely to allow participation in a trial
 - May explicitly require barrier plus second method, even for non-hormonal methods where drug/drug interaction not an issue

Double methods

- Requiring two methods in the 45-54 age population
 - Risk of pregnancy with no method lower than risk of pregnancy with many highly effective methods in younger women
 - Difficulties with use of barrier methods
 - Perimenopausal vaginal changes
 - Erectile dysfunction
 - Latex allergies
 - $_{\circ}$ Issues with manual dexterity or visual acuity
 - $_{\circ}$ Out-of-pocket costs
 - Forces potential participants to choose between
 - $_{\circ}~$ Lying about adherence to protocol
 - Potentially starting new method that may be difficult/uncomfortable/affect quality-of-life
 - Declining to participate
 - For many (?most) studies, additional reduction in probability of unplanned pregnancy does not justify the burdens placed on participants and their partners
 - Current ongoing discussions with sponsor for Parkinson's study with minimum age of 55

Double methods

- Barrier requirement is reasonable for viral vectors
 - Only condoms (male or female) effective in preventing transmission
 - Should be required for all sexual activity regardless of reproductive status of partner
 - Consents often ambiguous or inconsistent
 - $_{\circ}$ Focus on male \rightarrow female transmission
 - $_{\circ}~$ Many do not discuss other sexual partnerships

Methods for People Who Can Produce Sperm

- Potential rationales
 - Seminal transmission of drug
 - Analogous to prevention of viral STIs like HIV/hepatitis
 - Requires condom use in all cases (including post-vasectomy)
 - Most protocols only discuss partners who could possibly become pregnant, but, like HIV/hepatitis, potential exposure is highest with non-vaginal intercourse
 - If condoms required, ICF needs to include statement that condoms required for all types of intercourse in the event of pregnant or breastfeeding partner
 - Minimal post-study drug requirement for condom use: 5 terminal half-lives of drug
 - Direct DNA/sperm damage
 - Minimal post-study drug requirement: 90 days (life span of sperm)
 - No rationale for requiring condoms if female partner is using a highly effective method (analogous to allowing partner vasectomy for female participants)
- Protocols often ambiguous about rationale
 - Inconsistent durations of contraception requirement
 - Inconsistent requirements

Methods for People Who Can Produce Sperm

- Male contraception requirement for trials of drugs already approved for another indication
 - Very few approved drugs have explicit language in label or prescribing information regarding potential pregnancy outcomes from paternal use
 - Rationale for requirement in this setting is not clear
 - From sponsor's perspective, ?potential liability exposure
 - In event of pregnancy loss or anomaly in partner of patient taking drug for approved indication: "Why did you warn participants in clinical trial about potential risks but not my client?"

Partners who Could Possibly Become Pregnant

- Requirement for partners able to become pregnant to use a highly effective method of contraception
 - Pragmatic issues
 - No current REMS for reproductive toxicity have any statements about female partner use (including thalidomide)
 - Documentation (HIPAA?)
 - Minor partners
 - No gynecologist would prescribe hormonal methods/place IUD in 50+ perimenopausal patient in order to allow partner to participate in a trial
 - Ethical issues
 - Partners are not consenting to research participation and do not have therapeutic relationship with study team
 - All systemic methods have risks, and even barrier methods have potential issues
 - Requiring nonconsenting partner to take on those risks/burdens as condition of partner participation violates basic research ethics
 - Telling participant to inform their partner they "should" or "must" use specific methods
 - Sponsor, study team, participant do not have knowledge or right to judge appropriateness of specific methods for specific female partner—violates principles of both research ethics and reproductive justice
 - Creates potential conflict for couple

Partners who Could Possibly Become Pregnant

• Duke approach

- "You should tell your partner about your participation in this research and the potential risks to a pregnancy. If you have not had a vasectomy and they are not using another method of birth control, they should discuss options with their doctor."
- Alternative: protocol amendment to make partner use of specified methods at time of enrollment an eligibility criterion
 - Still have issues with documentation, but avoids issues arising when partner not using specified methods

Common Issues: What Happens if Pregnancy Occurs

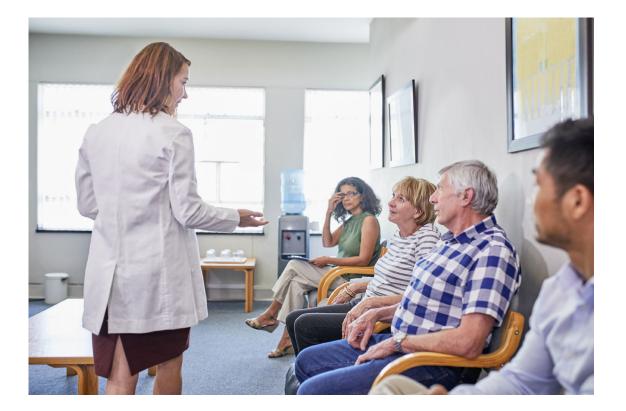
Pregnancy Reporting

- Most protocols require reporting of pregnancy and follow-up of pregnancy outcomes
 - Almost all include language such as "health of the baby for up to one year" that implies all
 pregnancies will result in a live birth
 - Doesn't
 - Account for very high miscarriage rate even in healthy women (20-30%, over 55% in women over 40)
 - Potential for termination, either elective or because of high risk of underlying condition (maternal mortality >50% for some cardiac conditions)
 - Add qualifier such as "if appropriate, information on the health of the baby"
- Reporting of partner pregnancy
 - Requires separate consent
 - In states where pregnancy does not automatically emancipate minor (NC), would require parental consent as well
 - Specified in Duke adolescent ICFs where partner reporting is mentioned
 - If pregnant partner reporting required, then need to include contraceptive language in consent
 - $_{\circ}$ $\,$ To ethically justify research, there has to be uncertainty
 - If sufficient uncertainty about effects of paternal exposure to justify collecting data, then participants should be informed and asked to take precautions

Impossible Scenarios

- "You should not breastfeed during the study and for 3 months after your last dose of study drug"
 - Breastfeeding excluded at screening
 - Study drug stopped in event of pregnancy
 - No scenario where breastfeeding would be possible within 3 months.

Pregnancy-related Costs


- "The sponsor has not set aside funds to pay for obstetric, newborn, or pediatric care and is not responsible for such costs" in reproductive risk/contraception section
- Pregnancy possible even if participant conscientiously follows contraceptive requirements
 - Analogous to a complication of a standard-of-care treatment/test
- By including in section on need to avoid pregnancy, sponsor is implicitly suggesting that reimbursement for pregnancy-related care is a potential incentive to not following contraception requirements
- If included, belongs in section related to compensation for research-related risks

Summary

What I See When I Read the Inclusion/Exclusion Criteria

What I See When I Read the Inclusion/Exclusion Criteria

What I See When I Read the Pregnancy Testing and Contraception Protocol

Summary

- Majority of sponsor protocols/ICFs
 - Assume all potential study participants have the fertility, libido, and judgment of a college freshman on a Saturday night
- Reality
 - Risk of unplanned pregnancy is very low for majority of trial participants
 - Study specific requirements do not meaningfully reduce this risk and often impose undue burdens that can have significant impact on quality of life
- Development of consistent, evidence-based standards would make things better for everyone, most of all participants

Research Agenda

- Quantifying pregnancy risk for specific diseases/conditions
 - Prioritizing implementation of PRGLAC recommendations
 - Prioritizing improved contraception strategies for conditions associated with teratogenic drug use and/or severe maternal morbidity and maternal mortality
 - Identifying conditions where pregnancy risk rare enough to improve comfort with alternative approaches (such as consent addendums)
 - Estimating efficiency of requirements
 - Time costs for reviewing contraception requirements/number of pregnancies prevented by the requirements

Research Agenda

- Participant Perspective
 - Pregnancy and HIV/AIDS: Seeking Equitable Study (PHASES)
 - $_{\circ}$ NIH-funded
 - Interviews with people able to become pregnant in US and Africa with HIV about contraception requirements for studies, participation during pregnancy
 - Insight into perspectives relevant to cultural differences, impact on relationships, convenience, control
 - Similar empiric work needed for other conditions
 - $_{\circ}$ $\,$ Particular focus on 40-54 age group $\,$
 - Impact of specific requirements on
 - Willingness to participate
 - Quality-of-life
 - $_{\circ}$ Consent language
 - Impact on overall consent process
 - E.G, impact of irrelevant material on overall understanding of participation requirements, risks, potential benefits
 - Parents and adolescents
 - Pregnancy testing and contraception requirements
 - Long-term issues with gene therapies

Policy Agenda

- Multiple stakeholder consensus process
 - Patients/participants
 - Research study teams
 - FDA (probably international regulators as well)
 - Contract research organizations
 - IRBs (including major central IRBs)
 - Sponsors
 - \circ Industry
 - $_{\circ}$ NIH/other federal
 - Non-profits (ACS, AHA, etc)

Policy Agenda

- Uniform definition of "pregnancy potential"
 - Existing guidance from Clinical Trials Facilitation and Coordination Group, but not universally used
 - Definitions of "childbearing potential" and contraceptive method effectiveness are reasonable, but no consideration of different patient populations
- Incorporation of effects of age and condition into
 - Pregnancy testing requirements
 - Contraception requirements for participants and partners
- Sample consent language templates

Resources

- Clinical Trials Transformation Initiative: Pregnancy Testing
 - <u>https://www.ctti-clinicaltrials.org/sites/www.ctti-</u> <u>clinicaltrials.org/files/recommendations/pregnancytesting_recommendations_final_0.pdf</u>
- CDC: Contraception Effectiveness and Medical Eligibility
 - https://www.cdc.gov/reproductivehealth/contraception/mmwr/mec/summary.html
- Male Contraception Considerations
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960246/
- ICH Guidance on Contraception and Pregnancy Testing
 - https://www.uni-due.de/imperia/md/content/ethikkomission/kontrazeption.pdf
- Duke IRB Policy/Guidance
 - https://irb.duhs.duke.edu/policies-and-regulations/policies/pregnancy-testing
 - https://irb.duhs.duke.edu/policies-and-regulations/policies/contraceptive-use
- HHS Task Force on Research Specific to Pregnant and Lactating Women (PRGLAC)

Jke Obstetrics

& Gvnecologv

- https://www.nichd.nih.gov/about/advisory/PRGLAC
- PHASES
 - http://www.hivpregnancyethics.org/